Calendrical Calculations by N. Dershowitz, E. Reingold

By N. Dershowitz, E. Reingold

Show description

Read Online or Download Calendrical Calculations PDF

Similar algebra books

Abstract algebra

Fresh ,EXCELENT AND trustworthy carrier!

Algebra for College Students , Ninth Edition

Kaufmann and Schwitters have equipped this text's attractiveness on transparent and concise exposition, a number of examples, and considerable challenge units. This conventional textual content regularly reinforces the next universal thread: study a ability; perform the ability to assist resolve equations; after which observe what you have got realized to unravel software difficulties.

Aleph 0/Algèbre. Terminale CDE. Nombres réels, calcul numérique, nombres complexes

Los angeles assortment Aleph zero est une série de manuels de mathématiques publiée lors de l’application de los angeles réforme dite des « maths modernes ».

Contenu de ce volume :

Préface
Mathématique/Classes terminales. Nouveaux programmes (Arrêté du 14 mai 1971), sections A, B, C, D et E
Alphabet grec

1 Nombres réels
    1. 1 Propriétés de l’ensemble ℝ
        1. 1. 1 Corps commutatif totalement ordonné
        1. 1. 2 Corps des nombres réels
        1. 1. three Bornes supérieures et inférieures
        1. 1. four Intervalles emboîtés et suites adjacentes
        1. 1. five Théorème d’Archimède
        1. 1. 6 Valeurs approchées d’un nombre réel
        1. 1. 7 Corps des nombres rationnels
        1. 1. eight Valeur absolue d’un nombre réel
        1. 1. nine Congruences dans ℝ
        1. 1. 10 Automorphismes de ℝ
        Exercices

    1. 2 Calculs d’incertitudes
        1. 2. 1 Incertitudes
        1. 2. 2 Représentation décimale d’un nombre réel
        1. 2. three Incertitudes sur une somme et une différence
        1. 2. four Incertitudes sur un produit et un quotient
        Exercices
        Problèmes

2 Corps des nombres complexes
    2. 1 Corps ℂ des matrices (a -b; b a)
        2. 1. 1 Définition
        2. 1. 2 Le groupe (ℂ, +)
        2. 1. three Le corps commutatif (ℂ, +, . )

    2. 2 Espace vectoriel de ℂ sur ℝ
        2. 2. 1 Le sous-espace vectoriel ℂ sur ℝ
        2. 2. 2 Base et measurement de l’espace vectoriel ℂ
        2. 2. three Isomorphisme de ℝ et d’un sous-corps de ℂ
        Problème

    2. three Nombres complexes
        2. three. 1 l. a. notation z = a + ib
        2. three. 2 Opérations sur les nombres complexes
        2. three. three L’équation z² = a, a réel
        2. three. four Nombres complexes conjugués
        2. three. five Applications
        Exercices

    2. four Module d’un nombre complexe
        2. four. 1 Norme et module
        2. four. 2 Inégalité de Minkowski
        2. four. three Le groupe multiplicatif U des complexes de module égal à un
        Exercices

    2. five Représentation géométrique des nombres complexes
        2. five. 1 Plan vectoriel et plan affine identifiés à ℂ
        2. five. 2 Interprétations géométriques
        2. five. three l. a. symétrie aircraft axiale
        Exercices
        Problèmes

3 Forme trigonométrique des nombres complexes
    3. 1 Rappels et compléments
        3. 1. 1 Le groupe des matrices (a -b; b a), a² + b² = 1, et le groupe A des angles
        3. 1. 2 Le groupe additif ℝ/2πℤ et le groupe additif A des angles
        3. 1. three Conclusion

    3. 2 Forme trigonométrique d’un nombre complexe
        3. 2. 1 Homomorphisme θ du groupe additif ℝ sur le groupe multiplicatif U
        3. 2. 2 Forme trigonométrique d’un nombre complexe de module 1
        3. 2. three Forme trigonométrique d’un nombre complexe non nul

    3. three Argument d’un nombre complexe non nul
        3. three. 1 Isomorphisme du groupe (ℝ/2πℤ, +) sur le groupe (ℂ*, *)
        3. three. 2 Argument d’un nombre complexe u et forme trigonométrique de u
        3. three. three Formule de Moivre
        3. three. four Argument d’un nombre complexe z non nul
        3. three. five Propriétés de l. a. fonction argument de z
        3. three. 6 Cas des nombres réels et des nombres imaginaires purs
        3. three. 7 Résumé des propriétés du module et de l’argument d’un nombre complexe non nul
        3. three. eight Exemples de calculs
        Exercices

    3. four purposes trigonométriques
        3. four. 1 Calcul de cos nx et de sin nx, x étant réel (n = 2, n = three, n = 4)
        3. four. 2 Complément : étude du cas général
        3. four. three Linéarisation des polynômes trigonométriques
        3. four. four Notation e^(ix)
        Exercices
        Problèmes

4 functions des nombres complexes
    4. 1 purposes géométriques des nombres complexes
        4. 1. 1 Plan vectoriel euclidien et argument d’un nombre complexe
        4. 1. 2 Plan affine euclidien et argument d’un nombre complexe
        4. 1. three Représentations de nombres complexes. Exercices
        Exercices

    4. 2 Racines n-ièmes d’un nombre complexe
        4. 2. 1 Racines n-ièmes d’un nombre complexe
        4. 2. 2 Représentation des racines n-ièmes
        4. 2. three Racines cubiques de l’unité
        4. 2. four Racines quatrièmes de l’unité
        4. 2. five Racines n-ièmes de l’unité
        4. 2. 6 Racines n-ièmes d’un nombre complexe z et racines n-ièmes de 1
        4. 2. 7 Racines carrées d’un nombre complexe z non nul
        Exercices

    4. three Résolution d’équations dans le corps ℂ
        4. three. 1 Résolution de l’équation définie sur ℂ par az + b = 0
        4. three. 2 Résolution de l’équation du moment degré, sur ℂ, à coefficients complexes
        4. three. three Équation du moment degré à coefficients réels sur ℂ
        4. three. four Exemples de résolution d’équations du moment degré
        4. three. five Applications
        4. three. 6 Résolution, sur ℝ, de l’équation a cos x + b sin x + c = 0
        Exercices
        Problèmes

Additional resources for Calendrical Calculations

Sample text

The Nielsen reduction method in G now refers to Nielsen transformations from given systems to shorter systems and the resulting investigation of minimal systems. An analysis of the result of H. Zieschang [Z 2] for G {see also Rosenberger [R 6]} produces the following result. 2. Let G = HI *A H2. , y,~} for which one of ~he following cases hold: (i) y~ = for so me i ~ {1, .. ,y,~ > can be written as w = il~=l Y~,{~ ~ = d=l, e~ -- e~+l if u~ = ui+ ~ with L(yu~)<_L(w)for 1,.. , m} we have y~ ~t gag-~, but for a suitable natural number k we have y~ ~ gAg-l; (v) Of the y~ there are p _> contained in a s ubgroup of G conjugate to H~ or H2 and a certain product of them is conjugate to a non-trivial element of A.

A group G is a free group if and only if G ac~s freely From the above result we obtain perhaps the simplest proof of the Nielsen-Schreier theorem. Let H be a subgroup of a free group G. From the above theorem there exists a tree X on which G acts freely. H must clearly also act freely on this tree and therefore H is free. The explicit form of the Nielsen-Schreier theorem giving the form for the generators of H can also be obtained. Weagain refer the reader to [Se]. 1 establishes an equivalence between free groups and free actions on trees.

Let H be a subgroup of a free group G. From the above theorem there exists a tree X on which G acts freely. H must clearly also act freely on this tree and therefore H is free. The explicit form of the Nielsen-Schreier theorem giving the form for the generators of H can also be obtained. Weagain refer the reader to [Se]. 1 establishes an equivalence between free groups and free actions on trees. Wenow establish such an equivalence between amalgams and other actions on trees. If G acts on a tree X then a fundamental domain for X rood G is a subgraph T of X such that T -~ G/X is an isomorphism (G/X is the quotient graph).

Download PDF sample

Rated 4.39 of 5 – based on 33 votes