A First Course in Linear Algebra [GFDL by Beezer

By Beezer

Show description

Read or Download A First Course in Linear Algebra [GFDL PDF

Similar algebra books

Abstract algebra

Fresh ,EXCELENT AND trustworthy carrier!

Algebra for College Students , Ninth Edition

Kaufmann and Schwitters have equipped this text's attractiveness on transparent and concise exposition, various examples, and ample challenge units. This conventional textual content continuously reinforces the subsequent universal thread: examine a ability; perform the ability to aid clear up equations; after which observe what you could have discovered to unravel program difficulties.

Aleph 0/Algèbre. Terminale CDE. Nombres réels, calcul numérique, nombres complexes

Los angeles assortment Aleph zero est une série de manuels de mathématiques publiée lors de l’application de los angeles réforme dite des « maths modernes ».

Contenu de ce volume :

Préface
Mathématique/Classes terminales. Nouveaux programmes (Arrêté du 14 mai 1971), sections A, B, C, D et E
Alphabet grec

1 Nombres réels
    1. 1 Propriétés de l’ensemble ℝ
        1. 1. 1 Corps commutatif totalement ordonné
        1. 1. 2 Corps des nombres réels
        1. 1. three Bornes supérieures et inférieures
        1. 1. four Intervalles emboîtés et suites adjacentes
        1. 1. five Théorème d’Archimède
        1. 1. 6 Valeurs approchées d’un nombre réel
        1. 1. 7 Corps des nombres rationnels
        1. 1. eight Valeur absolue d’un nombre réel
        1. 1. nine Congruences dans ℝ
        1. 1. 10 Automorphismes de ℝ
        Exercices

    1. 2 Calculs d’incertitudes
        1. 2. 1 Incertitudes
        1. 2. 2 Représentation décimale d’un nombre réel
        1. 2. three Incertitudes sur une somme et une différence
        1. 2. four Incertitudes sur un produit et un quotient
        Exercices
        Problèmes

2 Corps des nombres complexes
    2. 1 Corps ℂ des matrices (a -b; b a)
        2. 1. 1 Définition
        2. 1. 2 Le groupe (ℂ, +)
        2. 1. three Le corps commutatif (ℂ, +, . )

    2. 2 Espace vectoriel de ℂ sur ℝ
        2. 2. 1 Le sous-espace vectoriel ℂ sur ℝ
        2. 2. 2 Base et measurement de l’espace vectoriel ℂ
        2. 2. three Isomorphisme de ℝ et d’un sous-corps de ℂ
        Problème

    2. three Nombres complexes
        2. three. 1 los angeles notation z = a + ib
        2. three. 2 Opérations sur les nombres complexes
        2. three. three L’équation z² = a, a réel
        2. three. four Nombres complexes conjugués
        2. three. five Applications
        Exercices

    2. four Module d’un nombre complexe
        2. four. 1 Norme et module
        2. four. 2 Inégalité de Minkowski
        2. four. three Le groupe multiplicatif U des complexes de module égal à un
        Exercices

    2. five Représentation géométrique des nombres complexes
        2. five. 1 Plan vectoriel et plan affine identifiés à ℂ
        2. five. 2 Interprétations géométriques
        2. five. three los angeles symétrie airplane axiale
        Exercices
        Problèmes

3 Forme trigonométrique des nombres complexes
    3. 1 Rappels et compléments
        3. 1. 1 Le groupe des matrices (a -b; b a), a² + b² = 1, et le groupe A des angles
        3. 1. 2 Le groupe additif ℝ/2πℤ et le groupe additif A des angles
        3. 1. three Conclusion

    3. 2 Forme trigonométrique d’un nombre complexe
        3. 2. 1 Homomorphisme θ du groupe additif ℝ sur le groupe multiplicatif U
        3. 2. 2 Forme trigonométrique d’un nombre complexe de module 1
        3. 2. three Forme trigonométrique d’un nombre complexe non nul

    3. three Argument d’un nombre complexe non nul
        3. three. 1 Isomorphisme du groupe (ℝ/2πℤ, +) sur le groupe (ℂ*, *)
        3. three. 2 Argument d’un nombre complexe u et forme trigonométrique de u
        3. three. three Formule de Moivre
        3. three. four Argument d’un nombre complexe z non nul
        3. three. five Propriétés de l. a. fonction argument de z
        3. three. 6 Cas des nombres réels et des nombres imaginaires purs
        3. three. 7 Résumé des propriétés du module et de l’argument d’un nombre complexe non nul
        3. three. eight Exemples de calculs
        Exercices

    3. four purposes trigonométriques
        3. four. 1 Calcul de cos nx et de sin nx, x étant réel (n = 2, n = three, n = 4)
        3. four. 2 Complément : étude du cas général
        3. four. three Linéarisation des polynômes trigonométriques
        3. four. four Notation e^(ix)
        Exercices
        Problèmes

4 purposes des nombres complexes
    4. 1 functions géométriques des nombres complexes
        4. 1. 1 Plan vectoriel euclidien et argument d’un nombre complexe
        4. 1. 2 Plan affine euclidien et argument d’un nombre complexe
        4. 1. three Représentations de nombres complexes. Exercices
        Exercices

    4. 2 Racines n-ièmes d’un nombre complexe
        4. 2. 1 Racines n-ièmes d’un nombre complexe
        4. 2. 2 Représentation des racines n-ièmes
        4. 2. three Racines cubiques de l’unité
        4. 2. four Racines quatrièmes de l’unité
        4. 2. five Racines n-ièmes de l’unité
        4. 2. 6 Racines n-ièmes d’un nombre complexe z et racines n-ièmes de 1
        4. 2. 7 Racines carrées d’un nombre complexe z non nul
        Exercices

    4. three Résolution d’équations dans le corps ℂ
        4. three. 1 Résolution de l’équation définie sur ℂ par az + b = 0
        4. three. 2 Résolution de l’équation du moment degré, sur ℂ, à coefficients complexes
        4. three. three Équation du moment degré à coefficients réels sur ℂ
        4. three. four Exemples de résolution d’équations du moment degré
        4. three. five Applications
        4. three. 6 Résolution, sur ℝ, de l’équation a cos x + b sin x + c = 0
        Exercices
        Problèmes

Extra info for A First Course in Linear Algebra [GFDL

Sample text

271 272 275 282 283 284 Section VS VSCV The vector space Cm . . . . . VSM The vector space of matrices, Mmn . VSP The vector space of polynomials, Pn . VSIS The vector space of infinite sequences VSF The vector space of functions . . . VSS The singleton vector space . . . CVS The crazy vector space . . . . PCVS Properties for the Crazy Vector Space . . . . . . . . . . . .

119 121 123 125 126 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Archetype L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 140 141 142 143 143 144 145 146 148 Section LDS RSC5 Reducing a span in C5 . . . . . . . . . . . . . .

Xxxvi . . . . 75 76 76 77 77 78 78 Section VO VESE Vector equality for a system of equations . . . . . . . . . . . VA Addition of two vectors in C4 . . . . . . . . . . . . . . . CVSM Scalar multiplication in C5 . . . . . . . . . . . . . . . 89 90 91 Section LC TLC Two linear combinations in C6 . . . . . .

Download PDF sample

Rated 4.56 of 5 – based on 18 votes